## Department of Non-Food Product Quality and Packaging Development Poznań University of Economics and Business, Poznań, Poland

e-mail: mariusz.tichoniuk@ue.poznan.pl

#### **Mariusz Tichoniuk**

### Poznań University of Economics and Business

Poznań – the 5th largest city in Poland (ca. 520 000 habitants) / Poznań metropolitan area – 1,1 mln - a very important center of trade, technology, sports, tourism, and education (ca. 130 000 students) (8 public universities: Adam Mickiewicz Univ. (universal), Universities of Medical Sciences, Technology, Life Sciences, Music, Fine Arts, Physical Education and Economics & Business









## Department of Non-Food Product Quality and Packaging Development Poznań University of Economics and Business, Poznań, Poland

e-mail: mariusz.tichoniuk@ue.poznan.pl

#### **Mariusz Tichoniuk**

### Poznań University of Economics and Business

#### **Programs:**

- Bachelor in Business Administration English language course
- Finance (Bachelor) English I. c.
- Innovation Management (Master) English I. c.
- International Economic Relations (Master) English I. c.
- Quantitative Finance (Master) English c.
- Doctoral School / Doctoral Seminars in English
- Product Quality and Development (Engineer / Master) Polish language course
- Production Management and Engineering (Eng. / Master) Polish I. c.

- ...











# Department of Non-Food Product Quality and Packaging Development Poznań University of Economics and Business, Poznań, Poland

e-mail: mariusz.tichoniuk@ue.poznan.pl

#### **Mariusz Tichoniuk**

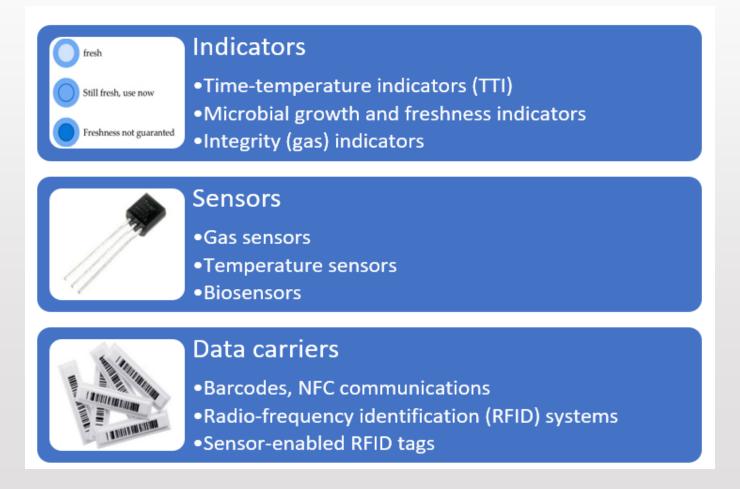
#### THE POTENTIAL OF INTELLIGENT PACKAGING IN THE REDUCTION OF FOOD WASTE

According to FAO reports one-third of all food produced for human consumption is lost or wasted. The estimated total cost is 990 billion USD every year around the world. For the European Union, ca. 88 million tons of food is wasted every year (173 kg per person)

The main source of food waste in the food supply chain is **improper household storage** and **consumption**.





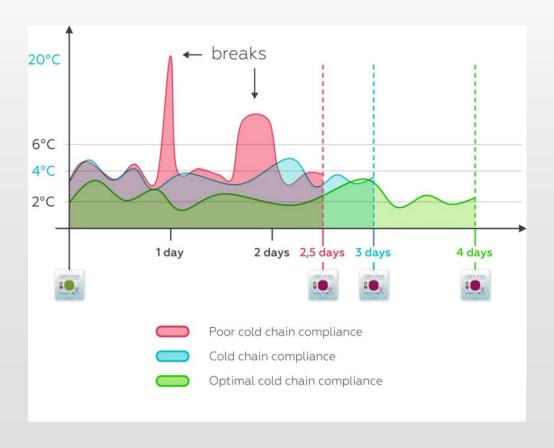

## THE POTENTIAL OF INTELLIGENT PACKAGING IN THE REDUCTION OF FOOD WASTE

### Reasons for food loss/waste Packaging opportunity 1. Packaging failure in distribution Fit for purpose Pre-packed or processed food 2. Food perishing in distribution Packaging materials and innovation to and after sale extend shelf life Designing for smaller household 3. Confusion about shelf life Date marking and food safety Understanding and tracking supply chain 4. Packaging failure/damage in transit losses Excess stock Intelligent packaging and data sharing Poor stock rotation Retail ready packaging (RRP) 7. Multiple handling of fresh produce



## THE POTENTIAL OF INTELLIGENT PACKAGING IN THE REDUCTION OF FOOD WASTE

**Intelligent packaging** react immediately to significantly changing conditions that affect the state of packaged product and they could inform all participant of the supply chain about the current condition of packaged items. They could be applied for direct monitoring of the product quality and **dynamic adjustment** of their **shelf life** (DSL attitude).



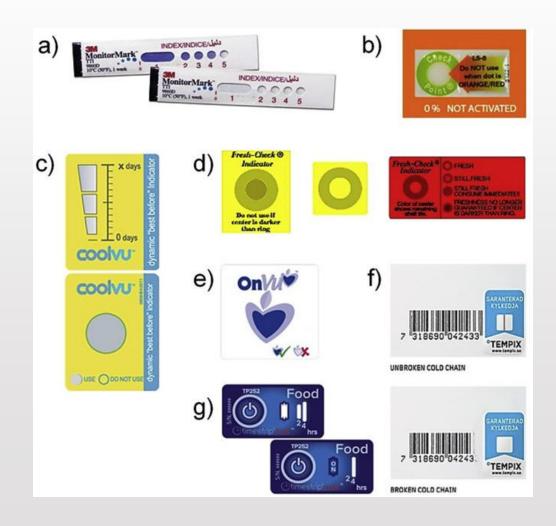



## THE POTENTIAL OF INTELLIGENT PACKAGING IN THE REDUCTION OF FOOD WASTE

Regarding the <u>final consumer</u> of food, the information provided by intelligent packaging should be **simple** and **easy to understand**.

The most desirable form of the indicator is a graphically attractive label that changes the appearance and/or colour when food quality changes.






CRYOLOG, http://cryolog.com/en/topcryo/



### Time-temperature indicators (TTI)

- a) Monitor Mark<sup>TM</sup> (3M)
- **b)** Fresh-Check® (Lifelines Technologies Inc.)
- c) CoolVu™ (Freshpoint)
- d) Checkpoint® (Vitsab International AB)
- e) OnVu™ (Freshpoint)
- f) Tempix<sup>®</sup> (Tempix AB)
- g) Timestrip® (Timestrip Plc)



### **Time-temperature indicators (TTI)**

| TTI indicator<br>(company, country)                              |                        |     | Colour change<br>(optical response) | Application                        |  |  |
|------------------------------------------------------------------|------------------------|-----|-------------------------------------|------------------------------------|--|--|
| CheckPoint® types M, L<br>(Vitsab Int. AB, Sweden)               |                        |     | tricolour: green to yellow to red   | meat, fish, dairy products         |  |  |
| (e0)®<br>( <u>Cryolog</u> , France)                              | microbial              | no  | green to red                        | cold chain                         |  |  |
| FreshCheck®<br>(TEMPTIME Corp.<br>USA)                           | polymeric              | no  | colourless to blue                  | all kind of fresh<br>products      |  |  |
| On <u>Vu<sup>TM</sup></u> ( <u>Freshpoint</u> , Switzerland)     | photochromic           | yes | dark blue to colourless             | meat, fish, dairy products         |  |  |
| Monitor Mark <sup>TM</sup> and<br>Freeze Watch<br>(3M Comp. USA) | diffusion-<br>reaction | yes | diffusion of coloured path/material | bakery products,<br>beverage, meat |  |  |



### Thermochromic packaging elements





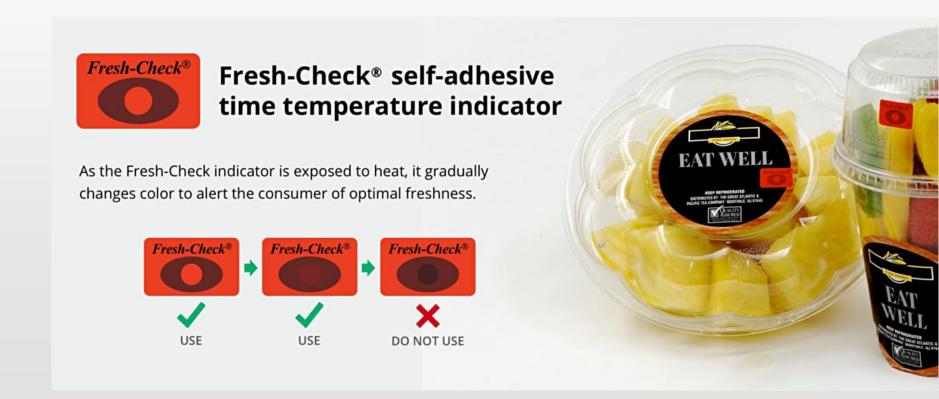




### Time-temperature indicator => freshness indicator

#### **CheckPoint L5-8 Smart TTI Seafood Label**

before activation (white) and activated (green)




CheckPoint label L5-8 Smart TTI Seafood Label showing thermal exposure over the safe levels recommended by the FDA



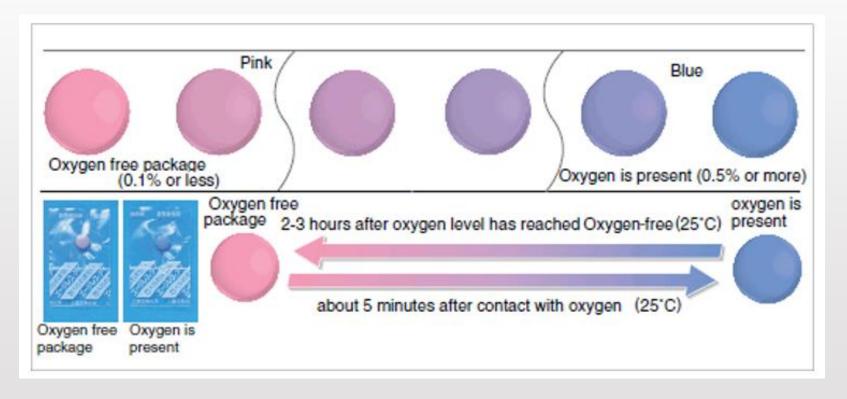
### Time-temperature indicator => freshness indicator

Fresh-Check TTI showing when the product is safe and not safe for consumption



### **Chemical sensors / indicators**

| Target compounds (metabolites) | Food product                | Freshness indicator / sensor                                                                                              |  |  |  |  |
|--------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Biogenic amines                | Fish, Seafood, Meat         | Colour-changing indicator with pH-sensitive dye / electrochemical sensor for enzyme redox reaction                        |  |  |  |  |
| Carbon dioxide                 | Fermented food, Meat        | pH sensitive with colorimetric response / electrochemical sensor <i>e.g.</i> with silicon-based polymer recognition layer |  |  |  |  |
| Glucose / Lactic acid          | Fermented food, Meat        | pH sensitive with colorimetric response / electrochemical sensor for redox reaction                                       |  |  |  |  |
| Oxygen                         | Meat, Fruits,<br>Vegetables | oxygen sensitive indicator with pH-sensitive dye optical sensor by fluorescence                                           |  |  |  |  |


### **Chemical sensors – integrity indicators**

| Type of indicator            | Commercial<br>name | Company<br>(country)                      | Area of application                                                     |  |  |  |
|------------------------------|--------------------|-------------------------------------------|-------------------------------------------------------------------------|--|--|--|
| Integrity (gas)<br>indicator | Ageless Eye®       | Mitsubishi Gas Chemical<br>(Japan)        | All packed food products – specially applicable in aseptic and modified |  |  |  |
| Integrity (gas)<br>indicator | Novas®             | Insignia Technologies<br>(United Kingdom) | atmosphere packaging<br>systems                                         |  |  |  |



### **Chemical sensors – integrity indicator**

Ageless Eye® gas (oxygen) indicator





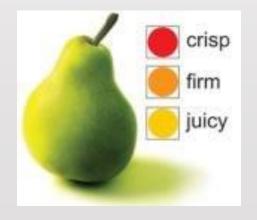
### **Chemical sensors – integrity indicator**

Food fresh<sup>TM</sup> indicator



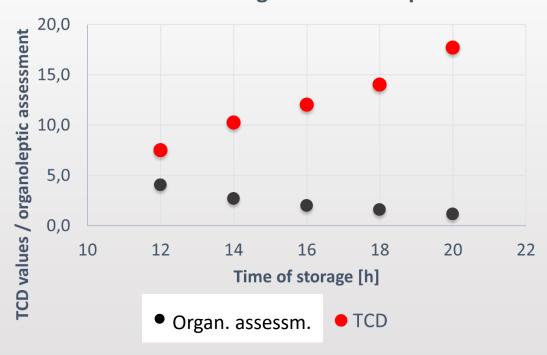


### **Chemical sensors – freshness indicators**


| Type of indicator   | Commercial<br>name | Company<br>(country)                                                    | Area of application                                                                                                                  |  |  |  |
|---------------------|--------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Freshness indicator | Fresh Tag®         | COX Technologies<br>(USA)                                               |                                                                                                                                      |  |  |  |
| Freshness indicator | Raflatac           | VTT and UPM Raflatac<br>(Finland)                                       | Perishable food products, with volatile metabolic products <i>e.g.</i> meat, fish and seafood, dairy products, vegetables and fruits |  |  |  |
| Freshness indicator | RipeSense          | RipeSense<br>(New Zealand)                                              |                                                                                                                                      |  |  |  |
| Freshness indicator | SensorQ®           | DSM NV and Food Quality<br>Sensor <u>Interational</u> Inc.<br>(Denmark) |                                                                                                                                      |  |  |  |

### **Chemical sensors – ripening indicator**

ripeSense fruits ripening indicator








### Chemical sensors – freshness indicator

#### Raw fish storage in room temp.









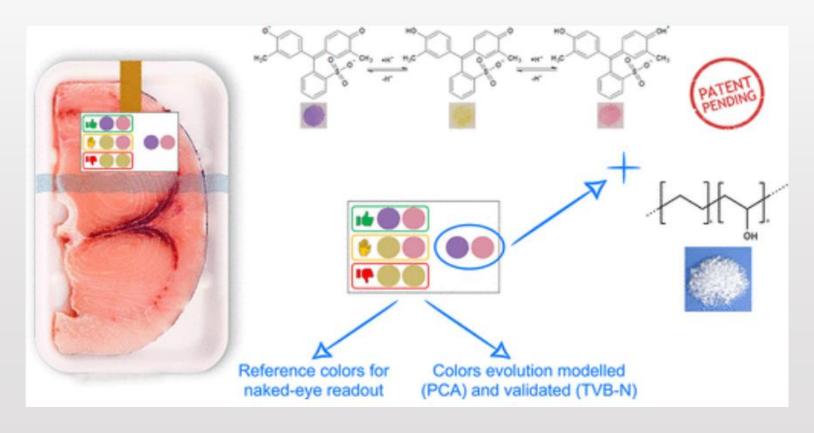
**Organoleptic assessment scale:** (appearance, color, smell, texture): 5 – very good / 4 – good / 3 – sufficient / 2 – insufficient / 1 - bad

# THE POTENTIAL OF INTELLIGENT PACKAGING IN THE REDUCTION OF FOOD WASTE

### **Chemical sensors – freshness indicator**

| Warunki<br>oznaczenia | Początek<br>oddziaływania<br>z mięsem ryb |       | 12 godzin<br>oddziaływania<br>z mięsem ryb                                      |       | 15 godzin<br>oddziaływania<br>z mięsem ryb |                                            | 18 godzin<br>oddziaływania<br>z mięsem ryb |                                            | 24 godzin<br>oddziaływania<br>z mięsem ryb |                                            | 36 godzin<br>oddziaływania<br>z mięsem ryb |                                            | 47 godzin<br>oddziaływania<br>z mięsem ryb |       |
|-----------------------|-------------------------------------------|-------|---------------------------------------------------------------------------------|-------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|-------|
| (C)                   | PEG9                                      | PEG34 | PEG9                                                                            | PEG34 | PEG9                                       | PEG34                                      | PEG9                                       | PEG34                                      | PEG9                                       | PEG34                                      | PEG9                                       | PEG34                                      | PEG9                                       | PEG34 |
| bez HCl               |                                           |       |                                                                                 |       |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |       |
| 0,5 mM<br>HCl         |                                           | 20    | 8                                                                               |       |                                            |                                            |                                            | 20                                         |                                            |                                            |                                            |                                            |                                            |       |
| bez HCl               |                                           |       |                                                                                 |       |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |       |
| 0,5 mM<br>HCl         |                                           |       |                                                                                 |       |                                            | 人人人                                        |                                            |                                            |                                            |                                            |                                            |                                            |                                            | 人人人   |
| -                     | PEG9                                      | PEG34 | PEG9                                                                            | PEG34 | PEG9                                       | PEG34                                      | PEG9                                       | PEG34                                      | PEG9                                       | PEG34                                      | PEG9                                       | PEG34                                      | PEG9                                       | PEG34 |
| Warunki<br>oznaczenia | oddziaływania                             |       | 63 godzin 66 godzin<br>oddziaływania oddziaływania<br>z mięsem ryb z mięsem ryb |       | lywania                                    | 69 godzin<br>oddziaływania<br>z mięsem ryb |                                            | 71 godzin<br>oddziaływania<br>z mięsem ryb |                                            | 85 godzin<br>oddziaływania<br>z mięsem ryb |                                            | 91 godzin<br>oddziaływania<br>z mięsem ryb |                                            |       |
| ±:                    | PEG9                                      | PEG34 | PEG9                                                                            | PEG34 | PEG9                                       | PEG34                                      | PEG9                                       | PEG34                                      | PEG9                                       | PEG34                                      | PEG9                                       | PEG34                                      | PEG9                                       | PEG34 |
| bez HCl               | u.                                        |       | 112                                                                             |       |                                            |                                            | 7.<br>7.5                                  |                                            | 750                                        | 97                                         |                                            |                                            |                                            | us:   |
| 0,5 mM<br>HCl         |                                           | 20    |                                                                                 | 20    | 0                                          |                                            |                                            |                                            |                                            |                                            |                                            |                                            | 0                                          |       |
| bez HCl               | 25                                        |       |                                                                                 |       |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |       |
| 0,5 mM<br>HCl         |                                           |       |                                                                                 |       |                                            |                                            |                                            |                                            |                                            |                                            |                                            | 人人人                                        |                                            | 人人少   |
|                       | PEG9                                      | PEG34 | PEG9                                                                            | PEG34 | PEG9                                       | PEG34                                      | PEG9                                       | PEG34                                      | PEG9                                       | PEG34                                      | PEG9                                       | PEG34                                      | PEG9                                       | PEG34 |

### Chemical sensors – freshness indicator

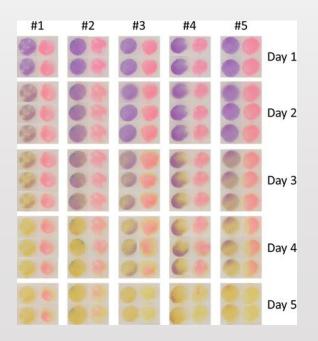

A sensor that monitors carbon dioxide as indication for the freshness of the dessert golden drop (Nopwinyuwong et al., 2010).

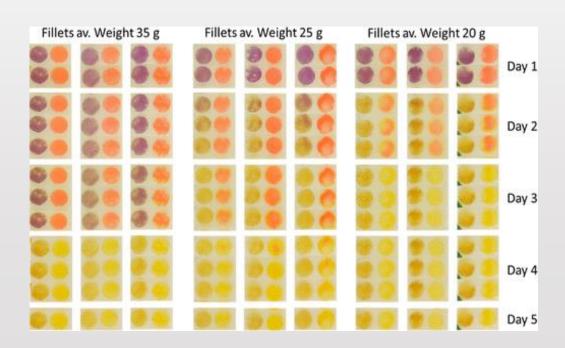


### Chemical sensors – freshness indicator

### **Dual-Optode Label to Monitor Fish Spoilage in Sales Packages**

(Magnaghi et al., ACS Food Sci. Technol. 2022, 2, 6, 1030–1038).





### Chemical sensors – freshness indicator

### **Dual-Optode Label to Monitor Fish Spoilage in Sales Packages**

(Magnaghi et al., ACS Food Sci. Technol. 2022, 2, 6, 1030–1038)

Fish fillet storage at 4°C for 1-5 days (freshness sensor response)



