
Age-Period-Cohort model in a Dirichlet

framework: A coherent causes of death

estimation.

SEMinario in Scienze Economiche e Sociali.

DEMET, Univeristy of Foggia

Andrea Nigri 1,Rebecca Graziani 2, Marco Bonetti 2

March 15, 2023

1 Department of Economics, Management and Territory, University of Foggia
2 Department of Social and Political Sciences, Bocconi University



Longevity risks modeling...The

’so-what?’ question.



Steady improvement in mortality level
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SPOILER: This is a

methodological paper ... We will

not be dealing with

socio-economic implications!
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Background & Motivation



� Demographic studies often require the modeling of multiple

outcomes.

� Many tasks need the different outcomes to be treated jointly

in a unified framework.

� The overall mortality can be described as the composition of

several causes of death (CoDs).

� Here we shall focus on the case of compositional data

(non-negative proportions with unit-sum).
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Our proposal

� For compositional data, Dirichlet distribution represents

the best solution.

� Dirichlet regression provides a GLM-like framework that

relates compositional data to other relevant variables.

� We propose an Age-Period-Cohort (A-P-C) model within

the Dirichlet framework, with specific interest in its use

for modeling longevity with multiple causes of death

modeling.
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APC - Metodologial framework



In the OLS regression we can write the APC model that uses categorical coding for

ages,periods, and cohorts as follows:

Yij = µ+ ai + pj + ck + ϵij ,

� Singular ”design matrix” - cannot be inverted

� The lack of identifiability of the parameters in the classic APC model (Glenn

(1976); Holford (1983); Wilmoth (1990); Y. Yang, Fu, and Land (2004); and

Nielsen (2008); and O’Brien (2011))

The first attempts at fitting the full APC model to create an idetifiale parametrization

using a sum-to-zero constrain:

I∑
i=1

ai =
J∑

j=1

pj =
K∑

k=1

ck = 0.

The problem with such constraints is that the results can differ substantially

depending on the constraint chosen. Solution: Mixed models.
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Why use Mixed model

O’Brien, R. M. (2017) Mixed models, linear dependency, and identification in

age-period-cohort models. Statististics in Medicine:

”Mixed models are identified, without introducing an additional constraint.”

� Model identification by constraining the solution through the shrinkage

associated with random effects.

� This shrinkage typically constrains the trend of one of the random factors to be

near zero and that this determines the slope of the other trends

� Similar linear trends, no matter what combination of fixed and random factors

are used.

� External constraint need to be justified on theoretical/substantive grounds.
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Model



Dirichlet distribution

� Dirichlet distribution: the most natural distribution for working with

compositions (Grunwald, Raftery and Guttorp (1993)).

� Working directly in the simplex allows for an easy interpretation of the behavior

of the components - Unlike the log-ratio approaches in Aitchison (1986).

It is the generalization of the widely known Beta distribution, and it is defined by the

following joint probability density function

p (y1, . . . , yD−1 | α) =
1

B(α)

D∏
d=1

y
αd−1
d

D∑
d=1

yd = 1, yd ⩾ 0

(1)

where α = (α1, . . . , αD)
T ∈ RD

>0 is the vector of shape (or concentration) parameters

for each category,
∑D

d=1 yd = 1, yd ⩾ 0, where
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Let Y ∼ D(α) denote the random vector that follows the Dirichlet distribution (with

Y = (Y1, . . . ,YD)
T ). Then, the value yd of Yd can be interpreted as the probability

that an event will fall in category d .

� The shape parameter α, controls both the location and dispersion of the

distribution.

� To isolate the effects of the location and dispersion, we use the approach of

Grunwald, Raftery and Guttorp (1993) by reparameterizing the distribution with

location, θ, and scale, τ , parameters.

Let Y ∼ Dirichlet(α = τθ), with

E [Y | θ, τ ] = θ and Var[Y | θ, τ ] = θθT /(τ + 1).

� θ determines the location (the mean) of the distribution of Y in the simplex (of

dimension d ,Sd ).

� The scale parameter τ is a strictly positive value, has no influence on the

expectation (it affects only the dispersion).
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Regression

As in Grunwald, Raftery and Guttorp (1993), we assume θ ∼ Dirichlet(η) where

E [θ] = η∑D
d=1

(ηd )
, and we can model the location using a generalized linear model on

the η parameter (Hijazi and Jernigan (2009)) as follow:

log (ηd ) = βd0 + βd1X1 + βd2X2 + · · ·+ βdkXk ,

The scale parameter τ in our model will be treated as a constant.

We can further generalize the model to a APC Dirichlet mixed model to be applied to

the study of causes of death as follow:

log (ηd ) = βd0 + βd1Age + pd + cd

We model the proportions of the CoDs considering as covariates Age, Period, and

Cohort.
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A-P-C Model specification



A-P-C Model specification

We chose to benchmark the canonical framework using constraints against two

different models using, (i) random effect for period, and (ii) for both period and age.

Let A = {a0, a1, . . . , aω}, P = {p0, p1, . . . , pn}, and C = {c0, c1, . . . , cm} be the set of

age, year and cohort categories, respectively. The A-P-C model describes the

proportion of death at age a ∈ A, time p ∈ P, and cohort c ∈ C, considering a multi

dimensional output for each cause d ∈ D, where D = {d0, d1, . . . , dk},
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Constrained Model

We start by introducing the constrained model as the classic way and thus adapting

the constraints to our multi causes framework in the following formulation.

log (ηd ) = β(d,a) + β(d,p) + β(d,c) (2)

where, βs are coefficients of fixed effects using categorical coding for Age, Period and

Cohort respectively, and ∀d ∈ D we impose the following constraints:



∑Ω
ω=1 β(d1,aω) =

∑N
n=1 β(d1,pn) =

∑M
m=1 β(d1,cm) = 0∑Ω

ω=1 β(d2,aω) =
∑N

n=1 β(d2,pn) =
∑M

m=1 β(d2,cm) = 0

.....

∑Ω
ω=1 β(dk ,aω) =

∑N
n=1 β(dk ,pn)

=
∑M

m=1 β(dk ,cm) = 0

(3)
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Random Effects

log (ηd ) = β(d,a) + β(d,p) + γd,c (4)

Where, γd,c is the random effect for cohort level specific for each cause, and βs fixed

affects using categorical coding for Age and Period.

log (ηd ) = β(d,a) + γd,p + γd,c (5)

In this case, γd,p and γd,c are random effects for period and cohort level (specific for

each cause), and β provide fixed effects using categorical coding for Age. For all tree

models we specify a τ ∼ Γ(0.01, 0.01) for precision parameter in Dirichlet distribution.

Furthermore, we use flat priors for random effects coefficients.
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Model estimation

� Samples from the posterior distributions were drawn by using Hamiltonian

Monte Carlo sampling and specifically using the stan software stan.

Hamiltonian Monte Carlo simulates movement through the parameter space by

analogy to a physical system where the potential energy is equal to negative

log-posterior, and it is a special case of the more general Metropolis–Hastings

algorithm for Markov chain Monte Carlo sampling.

� Four parallel chains were constructed and used to assess convergence to the

posterior distribution, each with 8000 samples, and the first half of each chain

was used as a warm-up period
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Model comparison

� For the majority of model, Gelman-Rubin split r̂ diagnostics are below the

suggested 1.05 threshold and examination of trace-plots indicate sampler

convergence to the target distribution.

� Separate models were therefore estimated and their accuracy was assessed by

using the leave-one-out information criterion (LOOIC). The LOOIC is a

measure of how well we might expect a model to perform in predicting a data

point without including it in the data that are used to fit the model.
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Data



Cause ICD7 ICD8 ICD9 ICD10

Infectious

A001-A043, A104,

A132, B001-B017,

B043

A001-A044 B01-B07 A00-B99

Lung cancer A050 A051 B101 C33-C34

Other Cancer
A044-A059,

B018-B019

A045-A050,

A052-A060

B08-B09, B100,

B109, B11-B17
C except C33-C34

CVD
A070, A079-A086,

B022, B024-B029
A080-A088 B25-B30 I00-I99

Respiratory
A087-A097,

B030-B032
A089-A096 B31-B32 J00-98

Digestive
A098-A107,

B033-B037
A097-A104 B33-B34 K00-K93

External
A138-A150,

B047-B050
A138-A150 B47-B56 V00-Y89

Other

A137, B045,

A060-A069, B020,

A071-A078,

A108-A137

A105-A137, B045,

A061-A079

B46, B18-B24,

B35-B46

R00-R99, D00-D48,

D50-D89,E00-E88,

F01-F99,G00-G98,

H00-H57,H60-H93,

K00-K92,L00-L98,

M00-M99,N00-N98,

O00-O99,P00-P96,

Q00-Q99,R00-R99

Table 1: WHO: ICD codes and classification
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Figure 1: Female population 1996-2017. Age and cause-specific proportions. Estimation using Penalize Composit

Link Model (Rizzi et al. 2015) and our ICD classification.
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Results
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Conclusion and further

directions



� Cohort effect, one of the big strengths of this study, quite neglected in causes of

death modeling.

� Estimating mortality by cause of death can provide valuable information for

healthcare and social services planning.

Some observed patterns can be surprising and unexpected but keep in mind:

� We are dealing with proportions instead of mortality rates as usual

� We are modeling causes-specific mortality instead of overall mortality.

Future developments:

� Forecasting, one period and cohort component for each cause, dependence

structure in time series model.
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Thank you for your

attention.

Questions / Suggestions ?
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